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An Accurate Approxjm:;tion of the Impedance of a
- Circular Cylinder Concentric with an
External Square Tube

H. J. RIBLET, FELLOW, IEEE

Abstract —The problem of determining the characteristic impedance of a
concentri¢ coaxial transmission line having a circular iriner conductor and a
sqilare‘ outer conductor is reexamined. The Green’s function for a rectangle
is used to determine the geometrical capacitance of a series of structures
ranging from 1-46 Q with an error less than 10 ~5. The method of analysis
is illustrated in detail for the 1-Q case. The results are presented in ternis
of the “outer shield factor” R, which is defined as the ratio of the
diameter of an. outer circle, having the same capacitance as. the outer
square, to the side of the outer square. Values of this ratio are tabulated for
impedances ranging from 1-46 . These values are also plotted on a curve
which can be read with an error of the order of 0.02 £ for impedances
greater than 3 .

I. INTRODUCTION

The determination of the characteristic impedance of the con-
centric coaxial line in which the outer conductor is a square and
the inner conductor is a circle has been the subject of numerous

treatments [1]-[16] appearing during the past forty years. In his

discussion of this problem, Cohn [10] suggested that additional
data between 30 and ‘2 © would be useful. This short paper
provides this information.
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The treatment of this problem by Frankel [1], Oberhettinger
and Magnus [2, pp. 75-78], and later by Laura and Luisoni [13],
[14], is one in which the potential problem is solved exactly in a
doubly connected region-in which the outer conductor is a
square, while the inner conductor is a four-lobed curve which
approaches a circlé ever more closely as its size decreases. Each
circle internal to and concentric with the square has the same
potential at eight equi-spaced points on its circumference. This
potential function, except for an additive constant, is the Green’s
function [2,p. 36] for the square which has a logarithmic singu-
larity at its center.

In this paper, a potential function is constructed, which is
nearly constant on the outer circumference of the inner conduc-
tor, by suitably combmmg a number of Green’s functions for the
outer square whose logarithmic singularities are all.inside of this
circle.

IL TeE GREEN’S FUNCTION

Fig. 1 shows an infinite lattice of positive and negative line
charges whose logarithmic potential is zero along the boundary of
a rectangle of width 24 and height 25 centered at the origin. This
follows from the fact that, for every negative charge on oné side
of a boundary, there is an equal positive charge mirrored in it on
the opposite side.

Consider for a moment the point Z’ which is inside the
rectangle in question. It determines a doubly infinite lattice of
line charges which differ from it in location by integral multiples
of 4a in the horizontal direction and by integral multiples of 45
in the vertical direction. Similar remarks can be made about the

.other three line charges shown in the upper right-hand quadrant
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Fig. 1. Lattice of line changes.

of Fig. 1. The logarithmic potential due to the infinite lattice
determined by Z’ is well known and is given by Oberhettinger
and Magnus [2, pp. 66—68]

=—AReln(01(—Z—Za£/)). )

Here A is the coefficient of the logarithmic singularity at Z’, and
8,(x) is the Jacobi theta function defined in [17, p. 231] where
q = exp(— ma /b). The logarithmic potential due to the four sets
of infinite lattices determined by Z’, Z’+2bi,— Z’'+2a, and
— Z’+2a+2bi is given by

= an fo{o 252 ) o[ £ 221

—1n(01(z+fa_2a))+ln(01(Z+Z ;Za——2bi))}.

(2
This function is the Green’s function of the rectangle for the
source point Z’ since it can be shown that it has a value of zero
on the boundary of the rectangle and satisfies Laplace’s equation
in the interior of the rectangle except at the point Z’, where it has
a logarithmic singularity.
For numerical computations, it is possible to expand 8,(z) in a
rapidly converging series in terms of ¢. If

0;(z) =sin(mz)—g*sin(37z)+ ¢°sin(57z)+ -+ (3)

then ,(z) = 24¢%6{(z); and because of its special form, the 6,(z)
of (2) can be replaced by 8{(z). Equation (3) converges with great
rapidity since the rectangle can always be oriented so thata /b <1.
Then ¢ < 0.044. In evaluating the Green’s function of (2), the
arguments of the theta functions are complex, in general; but, as
seen from (3), these complex numbers appear only in the argu-
ments of the sine functions. This means that the real and imagin-
ary parts of the theta function depend only on the addition
formula for the sine function. Thus the real and imaginary parts
of 8] (x + jy) in (3) are each rapidly converging power series in g
whose coefficients are well-known elementary functions of x and
y. As a consequence, the programming of (2) on a digital com-
puter is a simple matter.

III. THE FIRST APPROXIMATION

Consider Fig, 2 where the problem is the determination of the
total capacitance of the coaxial structure with a square outer
conductor of side s, while the inner conductor is a circle having a
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Fig 3. First approximation of potential.

diameter d. If four line charges are placed on the coordinate axes,
as shown by the four smaller circles, each a suitable distance R,
from the center, it will be found that the potential on the circle is
the same at 45° as it is at 0°. In fact, Fig. 3 is a plot of the
potential obtained by summing the Green’s functions associated
with the four line charges in the case when d/s = 0.998. Here
R, = 0.943486, while the value of the charge at the four points
was normalized so that the characteristic impedance Z; of the
coaxial line is given by the expression

n
=2. U. (4)
Here 7 is the characteristic impedance of space and U is the
potential.

If a conducting cylinder is placed to coincide with the circle on
which the potential of Fig. 3 was found, its potential may be
assumed to fall somewhere between the maximum on the curve,
0.01951, and the minimum, 0.01415. Then the characteristic im-
pedance of a coaxial line, for which d/s=0.998, is given by
(0.01683 +0.00268) 60 & =1.102 +0.16 Q if /2 is replaced by
its approximate value, 60 .

The radius of the external circle, as shown in Fig. 2, by which
the outer conducting square may be replaced to give the same
characteristic impedance, is readily found to exceed the side of
the square by a factor of 1.0149, if the average value of the
potential given above is assumed to be the exact value. This

Zy
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factor will be referred to as the “shield factor” of the square,
following Wheeler [3, p. 1401]. It is dppropriate to observe here
that the limiting value of this quantity as the diameter of the
inner conductor approaches zero was given by Frankel {1, (2)]
approximately as 1.079 and later exactly by Oberhettinger and
Magnus [2, p. 76] as 2/(K(k)(1+ k)) with k = tan’(7/8).}

IV. THE IMPROVED APPROXIMATION

The deviation of the potential, on the circle of interest, from a
constant value is relatively small even for an extreme case, as
shown in Fig. 3, so it seems reasonable to fill in the low points in
the potential by means of additional line changes uniformly
spaced on a slightly smaller circle. How this was done for the
d/s = 0.7 case is shown in Fig. 2. A total of 40 additional line
changes, indicated by the small circles, were placed on a circle of
radius, R, = 0.5. They were equally spaced and oriented so that
they straddled the symmetry lines of the square. They were
grouped into five sets of line charges. Each set contained eight
members with the same charge positioned symmetrically about
the symmetry lines of the square. One of these sets, the one
containing the line charges nearest the x-axis, is shown in detail
in Fig. 2. Because of the assumed symmetry, even if the sets have
different charges, the potential distribution on the segment of the
conducting circle of diameter d, lying between 0° and 45°, will
be typical of the potential distribution on the other seven similar
segments. Now the potential at any point in the square is the sum
of the potentials of the five independent sets of line charges plus
the potential due the original set of four line charges. By selecting
the relative magnitude of the charges of these six sets, it is
possible to obtain a potential which has the same value at six
equi-spaced points on this segment of the conducting circle at the
angular positions, 0, 7/20, - - - #/4. This potential, which is the
same at forty equi-spaced points on a circle, has the value,
0.43114, to within one digit in the last place everywhere on the
circle.

As the inner conductor approaches contact with the square,
additional line charges on the circle of radius R, are required to
achieve the same accuracy. In the extreme case considered here,
when d /s = 0.998, twenty line charges were placed in each 45°
sector. Then, with R, =0.9428, a potential constant to within
6X1077 was obtained. A plot of this potential, in one sector, is
given in Fig. 4. The rapid oscillations occur within 18° of the
point of contact. A value of 0.016600 is certainly correct to within
one digit in the last place.

Calculations of this kind were made for values of the ratio of
the diameter d of the internal circle to the side s of the external
square ranging from 0.5 to 0.998. These results are summarized,
most usefully perhaps, in Fig. 5 which plots the shield factor of
the square R versus d /s. It is felt, on the basis of trial, that this
curve can be read to an accuracy of +0.0004 for values of d /s as
large as 0.98. This corresponds to an error of about 0.02 € for all
smaller values of d/s. Table I gives values of R,.; which are
believed to be accurate to one digit in the last place, at least.

V. COMMENTS

Of course, given d/s, the characteristics impedance of the
structure is given by the formula

(%)

IThis equals 1.07871 to six places.
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TABLE1
VALUES OF R FOR GIVEN d /s
dass 5 [ 7 8 [ 95 998
Reff | 1 07861 1.07831 107734 107439 | 106568 | 1 05443 | 1.014Tt

and can be determined from Fig. 5 with an error of the order of
0.02 @ for impedance values greater than 3 £. Where an analytic
expression is desired, it should be noted that formulas given by
Wheeler [16, (34), (35)} agree with the results of this paper within
0.7 percent.

The accuracy of the method is dependent on the ability of the
computer to invert matrices of high order. For the d /s = 0.998
case, it was found that the choice of R, was critical for this
operation. It is believed, but not known, that performing the
approximation in two steps may materially simplify this inversion
problem.
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Theoretical and Experimental Study of the Resonant
Frequency of a Cylindrical Dielectric Resonator

D. MAYSTRE, P. VINCENT, anp J. C. MAGE

Abstract —A rigorous modal method is described for calculating the
resonant frequencies of a circular cylindrical dielectric rod placed between
two perfectly conducting plates. Comparisons of the numerical results with
those obtained from another rigorous theory developed at the same time by
one of the authors show an accuracy better than 10 ~4. Comparison with
experimental data shows generally a very good agreement.

I. INTRODUCTION

During the last decade, dielectric resonators met an increasing
interest, due to the development of temperature-stable materials

(1], [2].
Several methods have been proposed in order to solve the
problem of determining resonant frequencies. The earliest papers
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dealt with simple devices like a sphere, or a cylinder between
metallic planes [3]-[5]. Practical devices require more intricate
calculations, and solutions are often approximate [6]-[11].

The theoretical method described here can be considered as an
extension of the rigorous study by Hakki and Coleman [4] in the
case where the distances between the dielectric rod and the
metallic plates are different from zero. Space is divided into two
complementary cylindrical regions where the field is expressed in
the form of two modal expansions with unknown coefficients.
The matching between these two expansions leads to an infinite
set of homogeneous linear equations. The resonant frequency is
obtained by looking for the zero of the determinant of the
truncated matrix.

A comparison is made with another rigorous theory, the dif-
ferential theory, quite different in nature, and the relative dis-
crepancy never exceeds 10™ % when the two methods can be
implemented. Even though the same conclusion cannot be drawn
for the comparison with experimental data, the agreement is very
good and appears to be satisfactory, taking into account the
uncertainties about the actual experimental parameters and the
influence of the finite conductivity of the two plates. Thanks to
the great precision of the computer code, we are able to show that
the resonant frequency may be estimated very simply from an
equivalence rule, provided the air gaps are small.

II. THEORY

A. Basic Equations

We deal with the circular cylindrical rod represented in Fig. 1,
with permeability p,, real relative permittivity ¢, length 4,, and
radius R. It is placed at distances h; and &, from two perfectly
conducting plates parallel to the Oxy plane. We denote by
! = hy + h, + h, the distance between these two plates.

The aim of this study is to compute the fundamental TE
resonant frequency. The § component F(r, z) of the electric field,
which is independent of §, satisfies the following equation:

(k(r/.) )m‘éijo )

PF 109F
gr: r or

where k*(r, z) is the wavenumber which is equal to k3 = 27/A)>
in the air and to k2e in the rod.
On top of that, F must satisfy the following boundary condi-

tions:
F(r,0)=F(r,1})=0
aF .
F and 5z are continuous forz=h,and z = h, + A,
d(rF) .
—,— are continuous for » = R.
ar
@)
Of course, F(0O,z) must vanish since F is a § component, and

F(r,z) satisfies a radiation condition when »—o0; in other
words, the field must decay exponentially outside the resonator.

F
F, %; and consequently

B. Modal Expansions

Space is divided into two regions Q. (r > R) and € (r <R).
For both regions, we establish that the field may be expanded in
series.

In @, k*(r,z) remains constant and equal to k3. From (1)

ext?
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