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An Accurate Approximation of the Impedance of a

Circular Cylinder Concentric with an
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Abstract —The problem of determining the characteristic impedance of a

concentric coaxiaf transmission fine having a circular inner conductor and a

square outer conductor is reexamined. The Green’s function for a rectangle

is used to determine the geometrical capacitance of a series of structures

ranging from 1-46 Q with an error less than 10 – 5. The method of analysis

is illustrated in detail for the 1-Q case. The resitlts are presented in terms

of the “outer shield factor” R ,,f, which is defined as the ratio of the

diameter of an outer circle, having the same capacitance as the outer

square, to the side of the outer square, Values of this ratio are tabulated for

impedances ranging from 1-46 Q. These values are also plotted on a curve

wfdch can Iy read with an error of the order of 0.02 il for impedances

greater than 30.

I. INTRODUCTION

The determination of the characteristic impedance of the eon-
centnc coaxial line in which the outer conductbr is a square and
the inner conductor is a circle has been the subject of numerous
treatments [1]–[16] appearing during the past forty years, In his

discussion of this problem, Cohn [10] suggested that additional

data between 30 and 2 Q would be useful. This short paper

provides this information.
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The treatment of this problem by Frankel [1], Oberhettinger

and Magnus [2, pp. 75–78], and later by Laura and Luisoui [13],

[14], is one in which the potential problem is solved exactly in a

doubly connected region in which die outer conductor is a

square, while the inner conductor is a four-lobed cum’e which

approaches a circle ever more closely. as its size decreases. Each

circle internal to and concentric with the square has the same

potential at eight equi-spaced points on its circumference. This

potential function, except for an additive constant, is the Green’s

function [2, p. 36] for the square which has a logarithmic singu-

larity at its center.

In this paper, a potential function is constructed, which is

nearly constant on the outer circumference of the inner conduc-

tor, by suitably combining a number of Green’s functions for the

outer square whose logarithmic singularities are all inside of this

circle.

II. Trm GREEN’S FUNCTION

Fig. 1 shows an infinite lattice of positive and negative line

charges whose logarithmic potential is zero along the boundary of

a rectangle of width 2a and height 2 b centered at the ongin. This

follows from the fact that, for every negative charge on one side

of a boundary, there is an equal positive charge mirrored in it on

the opposite side.

Consider for a moment the point Z’ which is inside the

rectangle in question. It determines a doubly infinite lattice of

line charges which differ from it in location by integral multiples

of 4a in the horizontal direction and by integral multiples of 4 b

in the vertical direction. Similar remarks can be made about the

other three line charges shown in the upper right-hand quadrant
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Fig. 1, Lattice of line changes.

of Fig. 1. The logarithmic potential due to the infinite lattice

determined by Z’ is well known and is given by Oberhettinger

and Magnus [2, pp. 66–68]

‘=-ARJ”(’E’)) (1)

Here A is the coefficient of the logarithmic singularity at Z’, and

01( x) is the Jacobi theta function defined in [17, p. 231] where

q = exp ( – ma/b). The logarithmic potential due to the four sets

of infinite lattices determined by Z’, ~ + 2 bi, – ~ + 2a, and

– Z’+2a+2bi is given by

‘=-AR@(ln(’’(=))-ln(e’(z-:~2bi))
((– In 191

Z+.Z-2a

))((

+In ~ Z+ Z’–2a–2bi

4a 1 4a )))

(2)

This function is the Green’s function of the rectangle for the

source point Z’ since it can be shown that it has a wdue of zero

on the boundary of the rectangle and satisfies Laplace’s equation

in the interior of the rectangle except at the point Z‘, where it has

a logarithmic singularity.

For numerical computations, it is possible to expand Ol(z ) in a

rapidly converging series in terms of q. If

6{(z) =sin(~z)– q2sin(3~z)+ q6sin(5rz)+ . . . (3)

then 191(z) = 2q@{(z); and because of its special form, the 61(z)

of (2) can be replaced by O{(z). Equation (3) converges with great

rapidity since the rectangle can always be oriented so that a/b <1.

Then q <0.044. In evaluating the Green’s function of (2), the

arguments of the theta functions are complex, in general; but, as

seen from (3), these complex numbers appear only in the argu-

ments of the sine functions. This means that the real and imagin-

ary parts of the theta function depend only on the addition

formula for the sine function. Thus the real and imaginary parts

of 0{ (x + jy ) in (3) are each rapidly converging power series in q

whose coefficients are well-known elementary functions of x and

y. As a consequence, the programming of (2) on a digital com-

puter is a simple matter.

III. THE FIRST APPROXIMATION

Consider Fig. 2 where the problem is the determination of the

total capacitance of the coaxial structure with a square outer

conductor of sides, while the inner conductor is a circle having a
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Fig. 2 Circle concentric with an external.

020

019

018

= 017

=
:
z
a 016

015

014

I 1 1 1 1 1 I 1 1 I
0 45 90 135 180 225 270 315 360 405 6

Ci [d.~ )

0

Fig 3. First approximation of potential

diameter d. If four line charges are placed on the coordinate axes,

as shown by the four smaller circles, each a suitable distance RI

from the center, it will be found that the potential on the circle is

the same at 450 as it is at 00. In fact, Fig. 3 is a plot of the

potential obtained by summing the Green’s functions associated

with the four line charges in the case when d/s = 0.998. Here

RI = 0.948486, while the value of the charge at the four points

was normalized so that the characteristic impedance ZO of the

coaxiaf line is given by the expression

Zo=; u. (4)

Here q is the characteristic impedance of space and U is the

potential.

If a conducting cylinder is placed to coincide with the circle on

which the potential of Fig. 3 was found, its potential may be

assumed to fall somewhere between the maximum on the curve,

0.01951, and the minimum, 0.01415. Then the characteristic im-

pedance of a coaxiaf line, for which d/s= 0.998, is given by

(0.01683 ~0.00268) 60 Q = 1.1OQ t 0.16 Q if q/29r is replaced by

its approximate value, 60 Q.

The radius of the external circle, as shown in Fig. 2, by which

the outer conducting square may be replaced to give the same

characteristic impedance, is readily found to exceed the side of

the square by a factor of 1.0149, if the average value of the

potential given above is assumed to be the exact value. This
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factor will be referred to as the “shield factor” of the square,

following Wheeler [3, p. 1401]. It is appropriate to observe here

that the limiting value of this quantity as the diameter of the

inner conductor approaches zero was given by Frankel [1, (2)]

approximately as 1.079 and later exactly by Oberhettinger and

Magnus [2, p. 76] as 2/( K(k)(l + k)) with k = tan2(~/8).1

IV. Tm? IMPROVED APPROXIMATION

The deviation of the potential, on the circle of interest, from a

constant value is relatively small even for an extreme case, as

shown in Fig. 3, so it seems reasonable to fill in the low points in

the potential by means of additional line changes uniformly

spaced on a slightly smaller circle. How this was done for the

d/s = 0.7 case is shown in Fig. 2. A totif of 40 additional line

changes, indicated by the small circles, were placed on a circle of

radius, R* = 0.5. They were equally spaced and oriented so that

they straddled the symmetry lines of the square. They were

grouped into five sets of line charges. Each set contained eight

members with the same charge positioned symmetrically about

the symmetry lines of the square. One of these sets, the one

containing the line charges nearest the x-axis, is shown in detail

in Fig. 2. Because of the assumed symmetry, even if the sets have

different charges, the potential distribution on the segment of the

conducting circIe of diameter d, lying between 00 and 450, will
be typical of the potentiaf distribution on the other seven similar
segments. Now the potential at any point in the square is the sum
of the potentials of the five independent sets of line charges plus
the potentiaf due the original set of four line charges. By selecting
the relative magnitude of the charges of these six sets, it is
possible to obtain a potential which has the same value at six
equi-spaced points on this segment of the conducting circle at the
angular positions, O,~/20, . . . n/4. This potential, which is the
same at forty equi-spaced points on a circle, has the value,
0.43114, to within one digit in the last place everywhere on the

circle.

As the inner conductor approaches contact with the square,

additional line charges on the circle of radius R z are required to

achieve the same accuracy. In the extreme case considered here,

when d/s = 0.998, twenty line charges were placed in each 450

sector. Then, with R z = 0.9428, a potential constant to within

6 X 10-7 was obtained. A plot of this potential, in one sector, is

given in Fig. 4. The rapid oscillations occur within 180 of the

point of contact. A value of 0.016600 is certainly correct to within

one digit in the last place.

Calculations of this kind were made for values of me ratio of

the diameter d of the internaf circle to the sides of the external

square ranging from 0.5 to 0.998. These results are summarized,

most usefully perhaps, in Fig. 5 which plots the shield factor of

the square R ,ff versus d/s. It is felt, on the basis of trial, that this
cuwe can be read to an accuracy of +0.0004 for values of d/s as

large as 0.98. This corresponds to an error of about 0.02 Q for all

smaller values of d/s. Table I gives values of R ,ff which are
believed to be accurate to one digit in the last place, at least.

V. COMMENTS

Of course, given d/s, the characteristics impedance of the

structure is given by the formula

()Zo=*ln 5$-s

1This equals 1.07871 to six places.

(5)
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TABLE I

VALUES OF Re~~FOR GIVEN d\s

d/, 5 6 7 8 9 95 99e

Reff I 07861 1,07831 t 07738 I 07439 I 06568 I 05443 I ,01471

and cart be determined from Fig. 5 with an error of the order of

0.02 G?for impe&nce values greater than 3 C?.Where an analytic

expression is desired, it should be noted that formulas given by

Wheeler [16, (34), (35)] agree with the results of this paper within

0.7 percent.

The accuracy of the method is dependent on the ability of the

computer to invert matrices of high order. For the d/s = 0.998

case, it was found that the choice of R z was critical for this

operation. It is believed, but not known, that performing the

approximation in two steps may materially simplify this inversion

problem.
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Theoretical and Experimental Study of the Resonant

Frequency of a Cylindrical Dielectric Resonator

D. MAYSTRE, P. VINCENT, AND J. C. MAGE

-Abstract —A rigorous modal method is described for calculating the

resonant frequencies of a circular cylindrical dielectric rod placed between

two perfectly conducting plates. Comparisons of the numerical results with

those obtained from another rigorous theory developed at the same time by

one of the authors show an accuracy better than 10 – 4. Comparison with

experimental data shows generally a very good agreement.

I. INTRODUCTION

During the last decade, dielectric resonators met an increasing

interest, due to the development of temperature-stable materials

[1], [2].

Several methods have been proposed in order to solve the

problem of determining resonant frequencies. The earliest papers
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dealt with simple devices like a sphere, or a cylinder between

metallic planes [3]–[5]. Practical devices require more intricate

calculations, and solutions are often approximate [6]–[1 1].

The theoretical method described here can be considered as an

extension of the rigorous study by Hakki and Coleman [4] in the

case where the distances between the dielectric rod and the

metallic plates are different from zero. Space is divided into two

complementary cylindrical regions where the field is expressed in

the form of two modal expansions with unknown coefficients.

The matching between these two expansions leads to an infinite

set of homogeneous linear equations. The resonant frequency is

obtained by looking for the zero of the determinant of the

truncated matrix.

A comparison is made with another rigorous theory, the dif-

ferential theory, quite different in nature, and the relative dis-

crep~cy never exceeds 10 4 when the two methods can be

implemented. Even though the same conclusion cannot be drawn

for the comparison with experimented data, the agreement is very

good and appears to be satisfactory, taking into account the

uncertainties about the actual experimental parameters and the

influence of the finite conductivity of the two plates. Thanks to

the great precision of the computer code, we are able to show that

the resonant frequency may be estimated very simply from au

equivalence rule, provided the air gaps are small.

II. THEORY

A. Basic Equations

We deal with the circular cylindrical rod represented in Fig. 1,

with permeability pO, real relative permittivity c, length h*, and

radius R. It is placed at distances hl and h ~ from two perfectly

conducting plates parallel to the Oxy plane. We denote by

1= hl + h ~ + h ~ the distance between these two plates.

The aim of this study is to compute the fundamentrd TE

resonant frequency. The O component F( r, z ) of the electric field,

which is independent of 6, satisfies the following equation:

d2F 1 13F

[ 1

82F
—+ TX+ kz(r, z)–~ F+— =0 (1)
i3r2 r az2

where k z ( r, z ) is the wavenumber which is equal to k: = (2 rr/A) 2

in the air and to k& in the rod.

On top of that, F must satisfy the following boundary condi-

tions:

F(r,O)=F(r, [)=O

Fand ~ are continuous forz = hl and z = hl + hz

d(rF)
F, ~ and consequently ~ are continuous for r = R.

(2)

Of course, F’(0, z) must vanish since F is a 6 component, and

F( r, z ) satisfies a radiation condition when r ~ m; in other

words, the field must decay exponentially outside the resonator.

B. Modal Expansions

Space is divided into two regions Q,X, (r > R) and Q,. (r < R).

For both regions, we establish that the field may be expanded in

series.

In flex,, kz( r, z) remains constant and equal to k;. From (1)
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